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1 NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2432

TRANSFORMATIONS OF THE HODOGRAPH FLOW EQUATION AND THE
INTRODUCTION OF TWO GENERALIZED POTENTIAL FUNCTIONS

By Luigl Croccol
SUMMARY

It has been shown that the hodograph equations of motion can be
derived in a symmetrical form by the choice of the velocity and the mass
velocity as independent variables. The equations obtained by the use
of the velocity potential, the stream function, or their transforms ag
the unknown function are of the same general form and therefore can be
treated in the same manner.

Farticular sets of solutions have been studied independently of the
gas law adopted and some propertlies of the series obtained by means of
these sets have been discussed. Approximate gas laws for which the
golutions of the hodograph equations can be eagily found have been
- briefly discussed.

The equations have been further transformed so as to have as
independent varlables the complex velocity and the complex msss velocity.
Two new generalized potential functions can then be introduced that
satisfy very compact equations. From these functions, all the
quantities concerned with the representation of the motion can be
derived by means of formulas independent of the gas law adopted. By
means of the generalized potential functions some developments have been
performed with the approximate Chaplygin—Von K&rmf&n-Tsien law.

An approximate transonic method hes also been suggested.
INTRODUCTION

From a purely mathematical point of view, the ordinary hodograph
equations for the stream function or for the velocity—potential function
and the equatlons relating them to the physical coordinates are
sufficlent for the study of two-dimensional isentropic flows. However,

* from a more physical point of view they are not very elegant because of
their lack of symmetry in contrast with the symmetry of the corresponding
relations for the incompressible case.

1pt present at Guggenheim Jet Propulsion Center, School of
Engineering, Princeton University, Princeton, New Jersey.
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Now, the equations that define the velocity potential ¢ and the
gtream functlon V¢ are

Y
~
¢n=o
gy =w
) (1)
¥g =0
p
¥y = o w = m(w)
0 /
where the subscripts denote the differential quotients with respect to
the element of streamline ds or the element of normal dn, obtained
from ds by a counter—clockwise rotation of 90°, and w, p(w), and
Py = p(0) represent, respectively, the velocity, density, and stagnation
density. Eguations (l), which are symmetrical with respect to ds and dn *
if p = po, congerve their property of symmetry for variable p if the
mass velocity m is considered in some way the counterpart of w. If -

the hodograph equations for ¢ and V. (or for other functions) can be
expresged g0 as to make w and n (instead of the relation connecting
them) appear explicitly, the equations will then have a symmetrical
form that can be interesting not only from a formal point of view but
also from the fact that 1t can give rise to many possible developments,
some of which are illustrated in the present paper. In particular, it
is possible to choose as new independent variables the complex velocity
and mass velocity and to introduce a new generalized potential function
gatisfying a very compact equation from which ¢ and 1V, theilr Legendre
transforms X and o, and the physical coordinates x and y can be
deduced by simple differentiations.
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h HODOGRAPH EQUATIONS

The hodograph equationg can be directly deduced as follows., If N
and S (fig. 1) are the normal and the subnormal to the streamline
and 6 1s the direction of motion at a point P

z = x + 1y = e19(s + 1N) (2a)

dz = e1®[ds — N a6 + 1(aN + 5 a0

el(ds + 1 dn) = 919@? + 1 %) (2p)

where the defining equations (1) have been used in the last step. It
follows from equations (2) that

d¢ = w(ds — N d8)

d¥ = m(dN + S d9)

These are two relations between exact differentlals and therefore can be
written as

W
1 1
Sy v + S d6=;¢wdw+(;¢e+N)d9

&

4 ()

N = Ny dm + Ny do %ﬂrmdm+(}n\lf9—s>de

/
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where m and w are two related variables so that the meaning of
partial differentiation with respect to m 1is

Since dS and dN are exact differentials, it follows from

equations (4) that
o (1 _ 9 (l
_(;gjw) ___;¢9 +N>

and
J (1 o (1
o [= = = - S
Be(m “’m) S 10 )
so that
~
N, = @
> (5)
J
But from equations (4)
mNp, = ¥y or mlNy = ¥y

and

wa=¢w or w‘Sm=¢m
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Hence, putting e g; equal to T and performing the same
) =
W

transformation for m results in the following equations:

~

d

a()

el
I

which yield the well-known Chaplygin equations for g and ¥ in a
gsymmetrical form.

<

_¢e=

=8 L
ol

It is seen from equations (4) that
1
Se—;¢e+N

and

_1
Ng =2 ¥y —8

and, with the aid of equations (5),
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These equations can be satisfied by putting, respectively,
Wl = Xg , N = ay ) ms = -y (7)

Equations (7) are consistant if

Xg = Wy s —uy = X, (8)
a symmetrical gystem of equations in X and o very simlilar to
equations (6).°
From equations (3) and (7) it is deduced that

ag = w A%, — X5 a8 = d(wX, — X)

and

AV = m doy — ag 49 = d(mwy, — w)
Hence, to within an unessential constant,
# = % = X
(9)
V= my, —w
3 The functions X

wvhich give ¢ and ¥ in terms of X and w.
and ® are of course the Legendre transforms of ¢ and V¥ considered
ag functions of the physical coordinates.

The functions X and o are distinguished by the fact that once a
solution of equations (8) is known all the other functions concerning

QEquations (8) have already been written in the present form by

Bateman (reference 1).
3Relations (9) already have been derived in the present form by

Bateman and Pérés (references 1 and 2).
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the physical representation of motion can be derived by simple
differentiations, § and ¢ being obtained from equations (9) and =z
from equations (2) and (7). However, if ¢ and V are the known
functions satisfying equations (6), integrations are necessary to deduce
the other quantities. After integration and determination of the
constants so as to satlsfy equation (8), the followlng explicit
expressions for X and o are obtained from equations (9):

1/w ]
X = = e, ¢(wl,9)d(é)+ %l; 4/9; B(wy,07)51n(0 — 6)de,

6
- mir /9' ¥ (w,,,07)cos(6 — el)del + €, cos 6 + Cp sin 6
r

1/m 1 1 2]
W = ~m / W(Wl,@)d(ﬁ) + e / w(wr,el)sin(e — Gl)del
l/mr 1 S %

2]
1
+ ;;-L/C #(w,.,01)cos(6 — 61)d6; — C; sin 6 + C, cos 6
r

where w, and 6, are two arbitrary reference quantities, m, = m(wp) ,

and C; and C, are two arblitrary constants with no influence on ¢

and V. It is readily deduced with the ald of equations (2) and (7)
that

= otoB0n0)  YOeE) /1 P gon@) -1 [ ve0(3)

v - Wy 1/my

. Plorp,01) ) ¥0o,07) | a0, — (cp + 10p)
6, Wy Dy

By differentiation,

dz = eiG(QQ + 1 EE)

w m

which agrees with equation (2b).
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From equations (6) and (8) the hodograph equations for the ,
functions ¥, w, @, and V¥ can be easily shown to be as follows: v

d ox) . 7% _
V?&:(ma—w->+g—o (loa)
nd [y}, Po_, (10b)
ow om J6°
13 |1 o g
= | 3 + =0 (10c)
) L a(%)} %%
B 2
%21 %af +;:=0 (104)
@ " A3)

Fach of these equations reduces to the Laplace equation if m = w.

The following equations are obtained from equations (10) with w
as independent variable: :

>
2 EX (l—Me)w%+ (l—Mz)-a——X=O

592

wgég—;)+[L+M2-w%-w—log (1—M2)]w§w3‘3+(1—M2) Fo _,
ow

w2§g+[l—M2—w§—wlog (l—MQ)]w-g?;-+ (l—MQ) ﬁ:o

wzée-;-M (1+M2)w%;-y+ (1-M2)-52—Z’=o
ow

ae -




NACA TN 2432 9

where M, the Mach number, is defined by (see equation (15))

1 M2 =S logm
d log w

For every particular law m(w); that is, for every p(w), explicit
equations are obtained. For M <1 (subsonic flow) the equations are of
the elliptic type; for M > 1 (supersonic flow) the equations are of the

hyperbolic type.

The hodograph equations are frequently transformed so as to

simplify the second—order terms. Thus, if for %% > 0,

W = (dvm %)1/2 - [" d(%) n d(%)}l/g = (a 10g w a log m)*/2 (1)

13
I

<9%)1/u _ (f_ w)l/h ] (@?_)1/&

dw/ we d log w aw°
>1 /4

w d<%> L/ _ EE d log m A N e
m.d<%)_ "\ 24dlogw B a

' (12)

W
il

then
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and equations (10) are transformed into

a

Bar + Poe — 2P __%;g_ﬁ =0 (13a)

Yan + Voo + 2y, E;éﬁg—g =0 (13b)
d log a

o+ Xgg + 2y "gxéL' =0 (13c)
d log a

@y, + Wgg — 20 —g—— =0 (134)

If¢=B¢*:¢=;B-‘W*,X=i'

for @,, V., X, and o, are readily shown to be

X s and o = awy, the equations

j
a® m _ol .
Bxax + Prgg — PxB 22 ° .
2
1 d°p
Yoy + ¥xgg ~ Vx5 —35 =0
A 06 B o2 \
( (14)
N+ X = X £ g
T Xxe T X T T
an
a2 (1
Wipy, + Wxgg ~ W& —5\5) =0
dr /

For gin < 0 analogous transformations can be performed with the
W

introduction of di,, «,, and By defined in the same way as di, a,

andi B with —dm 1instead of dm. It is seen that A\ represents some
kind of an integral mean between log w and log m. Introducing the
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1/2
sound velocity a'= GE? / and the Mach number M = g leads to the

following equations deduced from the Bernoulli equation dp + pw dw = O:

\
d log p
dlogp _ e ) (15)
d log w
d logm
g8 E W )
d log w
Then for M <1,
= V1 -M d log w (16a)

a = (% V1 — M2)1/2 (16b)

- (2 \/1_172)1/ ® (160)

There is obtained a corresponding set of equations for dxl, @y, and Bl
when M > 1 by simply replacing 1 - M° by Me —~ 1.,

Approximate Methods

It 1s seen from equations (13) that for constant a or B these
equations reduce to the Laplace equation., The first possibility is to
be rejected for subgonic motion because, as equation (16) shows, it
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gives p as an increasing function of M., The second one is the well-
known Kédrmdn—Tsien approximation (references 3 and 4)

g2 =‘%9\ﬁ - M = K (17)

where K 1s a constant. This equatlion reduces to the Chaplygin
approximation for K =1 (reference 5 and derived studies).

Some considerations that will be useful in a subsequent section are
now introduced. With the help of equations (12), equation (17) can be
immediately integrated to obtain

1 1
mE=K<w—E+H)

;§=K(1+Hw2)

? (18)

ke

/

where H 1s an arbitrary constant. Integrating now equation (16a) and
the Bernoulli equations (15), there follows, respectively,

» = log X + Constant = —logGL-+ —L—> + Constant (19a)
W
1+ + HME n
and
' P
£ __L 9 constant - (19Db)
P KH p

0
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From equations (15), for a real isentropic gas,

2
002 >\ 7 1 o\
..g_= 1 - WE =1+1—;—M2)» (2082)
P Ymax
and
2
a [Po?) _eo® 1 (20b)
dwe pe pe a2
5 \1/2
where Vmax = 89 1s the maximum velocity at zero density,
y—1

8y 1s the stagnation sound veloclty, and y 1is the adiabatic index.

A comparison between equations (18) and (20) is shown in figure 2
where the law, equation (18), is represented by a straight line.
Chaplygin takes it as the tangent to the graph of equation (20)

at w=0, sothat K=1 and H = In the Kdrmdn-Tsien methoal

—
a
0
the tangent is taken at w = w_, the speed at infinity, so that
\
2 21
-1 7
K = 995 Cl-—th) - é.+ Z—-—-hgfﬁ ( -M;%
Poo 2
2
o)
KH = _22_ ..Lz . > (21)
P 8o
H = — L
2
a, Cl - M/ ) J

hThis method has been often presented in a less coherent form, as
the constants of equations (18) and (19) are determined for different
conditions, though the formula for the correction of pressure coefficients
1s not affected by this incoherence.
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Observe that for K # 1 the value of p at w =0 differs from the
exact stagnation density Po* It is easily seen that the value for KH

in equations (21) gives the slope of the true lsentropic relation at a
point corresponding to the conditions at Infinity, but, as thils depends
only on the value of KH, 1t 1s seen also that Kdrmdn's condition is
satisfied for every parallel to the tangent at W = W (fig. 2), that

is, for the KH value given by equation (21) but for different values

of K. This suggests the possibility of improving the mean approximation
of the KArmAn-Tsien method by an appropriate choice of K. The KdrmAn—
Tsien correction formula for the pressure coefficient has then to be
modified. The modified formula, independent of the constant of
integration in equation (19a), is then

c
Po
Op = 5 C
2 Pee Qn PO
&+ — K |-ZVK + —=
02 PO 2
0

which reduces to the Karmin—Tsien correction formula for the value of K
given by equation (21). Application of the modified formula with some

2
o)
value of K Dbetween __O_é_ (l —Mmz) and 1 gives values of Cp in
P
better agreement with experimental values.

For supersonic motion the hodograph equations reduce to the
gimplest hyperbolic equatlon (wave equation) for a; = Constant
or By = Constant, with o and By given by equations (12) with —dm
instead of dm or by equation (16) with M2 —1 1n place of 1 — M2,
The second possibility is now to be rejected because the resulting value
of p 1increases with M. The first possibility gives

dw2

2\1/2
0” = <—-di“—) = %\/MQ -1-®
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that 1is, after in.tegration5

The constants Ki and Hl can be determined so as to satisfy Khrmén's

condition:

_P 2
K == (M -1)
Po
2
KH = o2 20
2
PO
a aa?MuF
| =
M2 _1

With o3 = Constant, equations (13c) and (134) (modified for M > 1)

reduce to the simple wave equation. The general solution can therefore
be represented by, for instance,

x=f(x £ 0) (22)

O Pérés has already indicated a law of this kind (reference 2).
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Other laws for which the hodograph equations reduce to the Laplace
equation for M <1 (or to the wave equations for M > 1) are imme—
diately deduced from equations (14), (or from the corresponding equation ¥
for the supersonic case) as the laws which make one of the four quan—
tities a, 1/a, B, and 1/B, (or those corresponding for M > 1) linear
in A (or in Aj). For the true isentropic gas the curves of a, B,

1l/a, and 1/8 as functions of A are shown in figure 3. For w =0,
A =~ and a =B =1 the Chaplygin and the Karmhn-Tsien approximations
replace the true shape by a horizontal line which can give an approx—
{mation not too bad even for w = 0. Approximate laws for which
equations (14) reduce to the Laplace equation are represented by
arbitrary (and generally not horizontal) straight lines. It 1s seen
that for A = —o these lines diverge hopelessly from the true law.
Hence these laws do not appear to be convenient for the approximate
representation in a large range of velocity. Nevertheless they can
possibly have application when the variations of velocity from a mean
value (for instance, the value at infinity) are small, In this case it
is possible to achileve a better approximation than with the Kéarmhn—
Tsien method by taking as the approximate law the tangent to one of the
curves of figure 3. The resulting approximate p,p curve will have a
contact of second order with the real isentropic.

For the supersonic case, aj, B, l/al, and l/Bl, as functions
of M\, are shown in figure 4 for y = 1.4, An interesting possibility
is given by the curve of a7, which can be well approximated by a

straight line between M =2 and M = 10. Hence in this range the

exact hodograph equation in x*l = alx differs very little from the

simple wave equation in xl and 6. Therefore the general solution of

the supersonic motion in the said range of M 1s approximately

L

%

(M £ 6)

where o and Ay are given by the true isentropic law. This

approximation seems to be better than the approximation given by
equation (22).
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Exact Solutions of The Hodograph Equations

Ihe power set.— Many studies have been developed on two sets of
particular solutions of the hodograph equation in ¢ or V¥, the so—
called power set and exponential set, characterized by the fact that
for the incompressible case they reduce regpectively to the natural
powers of the logarithms of the complex velocity and those of the
complex velocity itself. The symmetrical form of equations (10) makes
i1t possible to present these solutions in & form that seems interesting.

By the introduction (though it is not strictly necessary) of four
auxiliary gquantities @&, %, ¥V, and ¥, satisfying in the same order
equations (10), and some supplementary conditions, the four complex
quantities

F= X+ 1o

¥ = ; + 1w

G=¢+ 1V
and

E=0¢+ 1y

can be made to satisfy not only equations (10) in the same order but
also the relations

uk, = 1F, (23a)
wF, = 1iF, (23b)
1 _
5 C1/m = —iGg (23¢c)

and

1y,
= Gy /y = ~iGg (23d)
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corresponding to equations (6), (8), and the relations

\
G = WFW - F
} (o4)
G = mEm —-F‘)

corresponding to equations (9). Conversely F and F are given by
formulas corresponding to those written in section entitled "Hodograph
Equations” for X and w:

1/w 1 1 6
F=—w G(w,e)d@ + = G(w,.,01)sin(6 — 61)d6,
1/vp r |6, :

6
P &(wy,67 )cos(6 — 67)a0] (25)
oy 6.

and a similar equation for f" with m and w, G and et Interchanged.

The quantities ';( B o':;, a, and V¥ can be determined so that they reduce

to X, w, $, and V for the incompressible case m = w; hence the
equations

F1=Fi=xi+i(1)i

and
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satisfy the Laplace equations

AFi = O
and
Mi = O
P 2
where A = + to which equations (10) reduce when m = w.
dlog w)2  26°

An operator (( )) 1is now defined as that which, when applied to
h
(log JL) (w,. being an arbitrary reference velocity), transforms it

into
<<(log %%)/2) = b dW1 (/nml Lo U/nwg ik e o o= hII(w,m,wy,m,)

for h=1,2, .. ., the'integration being repeated h times; then, the
indication of the lower limit of integration being omitted for brevity,

(((log r‘nm;)h)) o mm dmy /Wl dwy 1T dJn3 e ntT(m)  (060)
(((108 Yiv{)h)) h’/;;i gt d(i) l/mr Wg (i_—) .= hsl(%,%) (26¢c)
(o )

h!/ wy d lJ)/;l/wl la) C .= h!I(%,%) (264)

6Formulas (26c) and (264) could preferably be written as operations

(26a)

I

]

on powers of log i[ﬂ_ and log EZE— and are different from the
1/w 1/m
r T
operations given by equations (26a) and (26b) on powers of —log %L
r
m
and —log g
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From these equationsg there i1s deduced

m.%w Ip(w,m) = Ip 5 (m,w)

f (27)
N %(((log %)h)) - h(((l°8 %r)h_l))

and the analogous equations obtained by interchanging w and m, and/or
by changing w into 1/w and m into 1/m.

J

It is then easily verified that, with IO = 1, each of the following

functions

S(ETRS) |
5 (((]_og g 19)n)) (28)

o (e o)

o (et e))

is a solution of the corresponding equation,7 the signs having been
gselected so as to satisfy also equations (23). The choice of the upper
or lower sign does not affect the values of ¢, ¥, X, and w derived
from equations (28) so that for the solution of the flow problem it is

7This kind of solution has been first discovered by Bergman (see
for instance reference 6) and by Bers and Gelbart (reference 7). The .
present form is new and more symmetrical.
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sufficlent to retain, for instance, only the upper one;8 nevertheless in
some cases 1t can be useful to consider solutions with both signs.

The solution represented by the values, equations (28), of G
and ¢ does not coincide with the one corresponding to the values,
equations (28), of F and ¥ for it differs from the values of G
and & derived from F and ¥ by means of equations (24%). This can
be shown as follows: From the recurrence formula, which is easy to

verify,

ih(w,m) -5 Iy (m,w) = ‘/Jjn/: Wy d<mil_)L/;l/W1 ny d(;rlg) Eh—Q(wg’m?)

[y

Yo
- m.; Ih—3 (mQ,WQ)J

and from the values, directly deduced with Iy =1,

, 11 W.
. Il(w,m) - :—é Ip(m,w) = -Il(ﬁ’;) - z_n':-.

and

11 1
Ip(v,m) - & I (m,w) = Ie(fn"?r) * % Il(ﬁ’%?)

There 1s deduced with the aid of equations (27)

(l -w g—;{-)lh(w,m) = Ip(w,m) — § I 4 (m,w)

d
- (i) ez m ek
(29)

and the analogous relations obtained after interchanging the variables.
8

In this case for m = w the four solutions, equations (28), reduce

n
(to within a multiplicative constant) to (log gv_— - 16> , that 1s to the
T

v power set for the incompressible cage.
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Application of equations (24) to equations (28) yields the
following equation:

G =

[t} ]
— P
| -
[\
-~ i
o]
—— s
/;_,\ |O/
0% N—
, Ny
-
@]
H x
= Ale
SN
~_> +l
N— g
+ N
—~ N——
| N————
-
~—
=]
s
B
13
. +
ak
S—”
N
——
NN
et
Q
(65
5| &
I+
e
N
B
~r
\_/

and a gimilar equation for -E, if w is interchanged with m, with
the * sign. This G differs from thé elementary solution,

equations (28), although it is a linear combination of such elementary
solutions, a fact holding also for the incompressible case. In that
case, however, the expression for G contains only an elementary
golution with the upper sign if F 1s so, for then w, = m..

The physical coordinates are easily deduced; for by equations (7

~— _iN
S+ iN = F, = = ¥, .
> (30)
S+iN=F =L1F
m WG
J

where g and ﬁ are auxiliary quantities conmnected with ; and
by relations similar to equations (7). Hence

z = e19(3s + iN)

with

n
11 ]
Bl V] |
s —
TN |
" =
="
® -
Flp
It
|
w _HP
~
3 N
T~
~ B -
N~ Q
[0:9]
E
+1
e
(6]
~——
i
}._J
N
\_—’
+
T
—_
o~
]
691
i
4+
e
D
N
i
\’_-_J/
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iN

1}
M-
/'_?2

=]

|

=Rl

B
~——

1]

H
N
TN
—

|__I

o]

0]
S
-+l
o
<
i
~=
\_/
|
TN
N
/'_'\

o]

03]
o=

+

e

=
7

\'j

\_/

It is now again verified that, as already observed, the choice of
the sign does not affect the results concerning the values of ¢, ¥,
and z but only the introduced auxiliary functions. In subsequent
work, therefore, only the upper sign is retained.

Linear combinations, and in some cases infinite series of the
elementary solutions, equations (28), are still solutions of the
corresponding equations.

Infinite series in the power set.— If, say, F is given by an
infinite series, then developing and inverting the order of summations
gives

where

A(Y) = i a t”

0

represents the function corresponding to this power series.

Now, Independently of the convergence of this power series it is
readily verified by differentiation, that equation (31), whenever it
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converges, is a solution of the equation in F (see equation (10a)).
Similarly when it converges, the series

¥ Ih(m,w)(@-‘—) (32)
t=—16

1n=0 ath

obtained from equation (31) by simply interchanging w and m -~
satisfies the equation in F (see equations (10b)). For G and G

there are the analogous solutions N
oS gL [ah5(¢) |

C=2 mww) | Ta

=0 | at deoo

L ) (33)

<™ (L1} |afs(t
G = Z In\sm

20 h<w m) aZ‘(E ]

t=16
/

Now, let G and & be deduced from F and F by means of
equations (24), with the help of equation (29). There results the
following expression for G:

<=2 ld) [ (-2 8)

=0 t=— 10

2
- ST, (2 gl (A_&d_Ag)
2k+1\ n? W
2;0 mnw d.§2k+l r d e —16

and a similar expression for 5 after w and m, v, and m, have

been interchanged.

The values of ¢ and ¥ deduced from these expressions for G
and & are the same as those derived from equations (33) if

B(8) = -A(~0) —g("r ; “i—> w1

my Wy
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The formula for F can be written in a different form:

F - .hi) 187, (v,m) L;l(h)(e) ; 1&2(11)(9)}

with

A(-18) = a1(8) + iae(a)
and

B(i9) = bl(e) + 1b2(e)

It follows that

G = %2; (—i)h1h<%bé>{%l(h)(e) + ibg(h)(e)]

with

2(0) = =, (6) — E a;(0)

b,(08) = -an(0) + %‘ a,*(8)

There are similar equations for F and. E

25
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Hence for W = Wp

\
Xy = a(0)
ofg)
> (34)
wp = a,(8)
Wr(%)r = 2'(6)

J

5o that A and all the solutions of equations (31) and (32) are
determined by the values of X and its radial derivative on the
circle w = w, of the hodograph plane or by the corresponding values

for ®. Similar statements hold for B, ¢, and ¥ and solutions of
equations (33). Hence the solutions written depend upon two arbitrary
functions and, in their reglon of convergence, represent the general
golution of the hodograph equations. Naturally they do not give any
indication of the behaviour of the corresponding solutions at w = O;

for as m> w- 0, IIhL9 ©  as llog w'h so that the origin 1s

certainly outside the region of convergence.

In fact, if the solutions must be regular at W = O, only one of
the functions a(@) and b(8) can be chosen arbitrarily, and other
representations of the solutions are needed to determine the other. The
region of convergence of the series, equatlons (31), (32), and (33),
depends on the form of A(t) and B(¢). However, a general idea of
its shape can be given by making very general assumptions about these

functions and m(w).

Iet r(8) be less than the distance in the {—plane between the
point —16 and the nearest singularity of A(t) and let A (6)
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be the upper bound of IA(§)| on the circle with center —i8 and
radius r. Then the Cauchy's inequality gives
aba(e) Ay (0)
- $ht ——=—— (35)
dg C='—i9 I‘(e)
and a similar expression for B, with Bmax and Ty in place of
Ay and r. For the Iy, if
\
1 _aw - (%) - (fQ\ _
m d log W/pay Dy NP /max 8
‘l dmn = || ——e—ll—M2‘> = b
wd log Wip.y 0
> (36)
a(1/w) (m) o
m = = —— = C
d log {1/¥W) |max \W/max \Pg/max
a(1/m) Vo, _(22h —4 _
5 o'l =\ h-u =d
d log (1/%)| max max
/
are the upper bounds of the written quantities between w and Wp,
equations (26) give for even values of h
w
h
1 W
,Ih(w,m)l < g (VEB log af‘D
. v L
(37)
11 1 n
W
lIh<W’I_Il)| < e 6/6—({ log W—r)

and the same limitations for Ip(m,w) and Iy(1/m,1/w).
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For odd values of h the upper bounds for lIh(w,mﬂ

and lIh(m,w)l are obtained from the corresponding expressions in

) 1/2
equations (37) by multiplying them with (a/b)l/ and (b/a) / ,
respectively, and those for ’Ih(l/w,l/m)l and ‘Ih(l/m,l/w)l are

obtained by multiplying the expressions in equations (37) by (C/d)l/g
and (d/c)l/e, respectively.

Consideration of the series (31) shows that the terms of the series

N a2ka(t) = (9
g [Z g ()| Fa 2_:6 [ iy () e

are less than the corresponding terms of the geometric series

)

ab b‘ W
og —
;g Wy

e ) B

k=0

Am(l+%

which converges when the ratio is less than 1.

Hence the series (31) and (as it may be deduced in the same way)
(32) converge absolutely in the region

(ab)l/e

Log 3| < r(0) (382)

Similarly, the series (33) converge absolutely for

(cd)l/Q

og | < () (38b)

Now since ab and cd are functions of w and w and gince »r

T’
and r; are quantities which increase with the distance from the
gingularitles of A and B, the general shape of the region of
convergence in the hodograph plane is a curved strip, which contains the
circle w = w,, and whose width will be a minimum when —16 1is nearest
to a singular{ty of A(€) or B().
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If a singularity lies on the imaginary axis, that is, if A(-18) or
B(16), and their derivates have a singularity for some value of 6, the
corresponding width of the region of convergence will be zero. This
happens, for instance, when the reference veloclty w.. is the veloclty

r
at infinity of the flow round a body.

An observation of some interest is that as, for plausible laws,
p/pg 1s 0(1) for M =1 then (a‘b)l/2 and (cd)l/2 (equations (36))

1/2)

are O(ll - M2 or 0(’1 - Mrell/é) (the larger of the two) for M

and M, near 1,

Hence equations (38) show that for given A(f) and B({) the
wldth of the region of convergence is the greatest and the rapldity of
convergence the best near the sonic line M = 1. Therefore it 1is
believed that the solution represented by series (31), (32), and (33)
may have applications in the solution of transonic problems, naturally
in combination with other methods converging in the rest of the fleld
of motion.

Finally observe that the development of equation (31) can be
handled differently so as to obtain a power series in e:

o0 _ h =@
rey (005 nlanTn p(v,m)
. h=0 h! n=h

which by use of equation (27) and similar expressions and with

o0

£i(w) = :;: nla, I (w,m) and fg(w) = ;E:_n!ahIn(m,w) becomes

n=0 N=

F = zm_ (10)ek Ev' ((]1_.11? (m -g—)]kfl(w) +i -(:ii)—gﬂ W g*—m- En %;(w %i)]kfg(w)

o (2K)! W “s (2k + 1)!
Similarly,
~ 2. (_19)2k k ©_ ¢ 4\2ktl k
e L (P e L
k=0 (Ek)! dw dm 2 k=0 (2k + l)! dw dm dw/ | 1

The functions F and F, whenever the series converge, satisfy the
corresponding equations and the relations (23), as can be directly
verified, with arbitrary f] and fo. Analogous solutions hold for G

and G with 16 in place of —16, 1/m and 1/w in place of w and m,
and two arbitrary functions g;(w) and g-(w). For real values
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of f; and 1o the real and imaginary parts of F and T are
obtained directly; so that the equation

S TYRT A

+ i S_—;’L_G_)Qﬁ*i m %—;‘w %l—ﬂ(m %;;)]kfl(w)

=0 (2k + 1)!

depends only on fl(w); correspondingly, g and g5 become real and

the equation

X
e h a4 1 e :]
¢ + 1v —‘kz=o (21{)! El- d(l/w) ; d(l/m) gl(W)

K
(10)F+ 1 4

L = =< (w)
= (2x + D! ¥ a(1/m) |E a(im]” a/m)| &

depends only on gl(w).

The physical coordinates are then found by means of equations (2)
and (7) to be

y = 016 2 (-—16)2k L Ef(}a(m %)] ()

o (2x)!
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From x + iw there follows by means of equation (9) an expression
for @ + 1 which must coincide with the written one if

gy (w) = (w %; - l>fl(W)
fl(w) = - U/7gl d(1/w)

From this coincidence the following interesting formulas can be deduced:

k k
Ll s - (s el

and

k k
v d(lC}m) z d(i/w) v d(f/m)] A(" T - l) ) “(m = l)m %GE’ gﬁ(m %Wﬂ

which are easy to verify directly.

The meaning of the written solution is readily found by observing
that when the series converge, for 0 = 0, then X = fl(w), g = gl(w),

af

1
w=V¥ =0, x = 3> end ¥ = 0, so that £, =dﬂx dw, e, =(/§ dx, and the

whole solution is determined when the "axial" law of distribution of
velocity is given.

Hence the solution, under a somewhat different and more explicit
form, reduces to the one studied by Lighthill (reference 8) in his
work on the transonic flow in symmetrical channels. As Lighthill
observed the coefficients of the expansions become infinite at sonic
speed (for then dm = 0), so that the series diverge in the transonic
region. In this region, however, the solution can be found by following
the Lighthill's ingenious method, that is, inverting the series
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im
glving iy or the one giving ———i—i—gﬁx—, gince the coefficients of the

(16)
inverted serles are finlte at sonic speed. The application of Lighthill's
method can be made easier by the present form of the solution.

The exponential set.— If in equations (31), (32), and (33)

a(t) = 54 -

n

and

B(t) = %B(h)(c) - o

n

with arbitrary n, then the functions

\ -
F = En(w,m)e_ine
™ —ind
F = En(m,w)e
) (39)
11 inb
G = En<a,';;>e
in®@
_ 11
a = En(;,ﬁ)e
/
with coefficlents defined by
~
E (v,m) = i nhIh(w,m)
h=0 >
(ko)
Ep(m,w) = Z oIy (m,w)

h=0 J
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and similar equations for the other E, will be solutions of the
corresponding equations (10) and (23) which reduce, for m = w

to (we"ie/wr)n (equations (10a), (10b), (23a), and (23b)) and

: n
to (wel®/w)” (equations (10c), (104), (23¢), and (231)),
that 1s, to the exponential set for the incompressible case.

It is immedlately verified by means of equation (37) that the
series E, converge for all values of w and Wy, for which a, b, c,

and d are limited, that 1s, for which p and M are limited and not
zero. For plausible gas laws this excludes only the values w = O
and w = Wax

It 1s therefore seen, and easily verified directly, that
equations (40) and the two other equations for E, are, in order,

golutions of the ordinary differentlal equations

o | (h1a)

g n ‘-;-;( %} ~ 0% =0 (41p)

l : d(l% = d((igr/lm) -n°g =0 (41c)
} : d(ljm)% a(ij:)] —n¥y = 0 (ha)

| deduced from equations (10) by taking X, ®, ¥, and V¥ as the product
| of a sinusoidal factor in n® and of the corresponding function X,

®n, @y, or ¥, of w. For the normal isentropic law, equations (41)

become the known equations of the hypergeometric type and have been the
object of the investligations of many authors. (See, for 1nstance,
references 5, 6, 8, 9, 10, 11, and 12.) Equation (L1d) has generally been
studied with particular regard to those solutions that gatisfy the

condition that V¥,/w* 1s unity at w = O.
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Tt is immedlately verified that the solutions E_, do not satisfy
this condition and that the corresponding conditions at w = w, are:

(En)r =1

I
I < 1
B™
=
S
B
=
|
H
= |-
oy
Hle
B
]
P
T
i3l Loy
=
H

d
En = E,(w,m ]r

The symmetrical form of equations (41) allows some general
relations to be eaglly derlved. Some of these relations, that may be
ugeful for further developments, are now stated briefly.

The En can be considered ag the superposition of two independent

solutions® of equations (41):

[+2]

Cp(w,m) = 5 ngklgk(w,m)
k=0

? (42)

2
Sn(w,m) = ; n 1‘:H‘ng_d(w,m)

95olutions of the kind of E,, C,, and S, were first introduced
by Bers and Gelbart, reference 7.
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for which the conditions at w = w. are:

(Cn)r =1

dac
v /r

(sn)r =0

o) - o)

They are connected by relations similar to those connecting the
exponentials and the hyperbolic cosine and sine:

Cy=C,
S, = 5,
E, =C, %8

35



NACA TN 2432

Cp(w,m)Cp(m,w) — 8p(w,m)S,(m,w) = 1

En(w,m)E—(m,w) + En(m,w)E_(w,m) = 2

dC
- n(W:m)

aw = nsn(m) W)

s, {w,
m.——Eé;rEl = nCn(m,w)
m_éEnSﬁiEl = nEn(m,w)

aw

Similar relatlons hold when w and m are replaced by theilr Inverse
values.

All the solutions of equations (hl) can be represented by linear
combinations of C, and 8,, but these functions (as all the series

in Iy) are not suited to give the behaviour of solutions near w = O.
Since this behaviour 1s very important for many physical epplications,
it is necessary to follow a different method of investigation: Let

F = (Xpei0)”

T o= (X"

G = (Y007
and

G = (Ye'0)"
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be solutions of the corresponding equations (10) which reduce to the
exponential set for the incompressible cage. Then Xnn, Xnn, Ynn,

~

end Y, are solutions of equations (41). Now, if for negative values
of n the last two must coincide with @, and ¥, (such that, for

v,
instance, -413 =1 at w=0) and if for positive values of n the
v

flret two must coincide with the corresponding X, and w,, 1t is seen
that X /w, X n/m, Y, end wY must be equal to unity at w = 0. It

1s now shown that thig is possible for all values of n except some

exceptional values: Ilet

d log X,
dw

d logSél

? (43)
d log Yn

A TEV)

|~

2

d log ¥

o

It is immediately seen from equations (23) that R, must satisfy

3
"

Riccati's equation

=E_w§_R2 (L)

BiR
B
o
45
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and that ﬁn: Tp, and %n must satisfy the corresponding equations

with m and w interchanged or inverted. Furthermore, these .
quantitlies are connected by the following relations:

ﬁn = %; (45a)
T, = 51; (45D)
nm — R, w
o "o@ =% (45¢)

It is deduced from equations (43) that

= o[- [ (- T) ] (u62) .

X m ﬁn 1
'En = exp (/; (V—D?) dm (46p)
B m
‘wT e
m¥, = exp |- d/7 Y T8y (L6c)
" [PV oy - ol
W, = exp . z—gé——g-dw (464a)

go that these quantities are equal to unity and analytic at w =0 1f
all the integrands are analytic there. It can be shown in fact that,

P
if % = %o is an analytlcal function of w near w = 0, the integrands

of equations (L46a) and (46b) are zero and analytlic at w = O for all
values of n except negative integral and half-integral values (for
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only the negative integers if é%- is an analytic function of w2);

while the integrands of equations (46c) and (L464) are zero and analytic
at w =0 for all values of n except positive Integral and half—
integral values greater than 1 (for only the positive integers greater

than 1, if g%— is analytic in wg).

- These results reduce to the well—known results when the equations
are hypergeometric. In this case Lighthill (reference 8) has given the
most complete discussion of the gsolutions of the equation in Wn and

deduced important theorems, some of which may possibly be generalized
following the present method. It can be seen that the exclusion of the
pole at n = -1 for the equations in ¢n and V, 1is a general

property, which does not hold for the equations in Xp and wq.

For n =1 +the solutions of equation (44) (and of the analogous
equations) and the corresponding solutions of equations (24) are:

Ry =L =1 (47a)
Ry =X- T, (47p)
F = Xle‘ie = w16 (47¢c)
§ = %le'ie = me10 (k7d)
G =Y,elf = 1% o106 (47e)
G = 7,00 - L, (47f)
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It is seen from equations (24) that the values of G and G (hence

of ¢ end V) corresponding to equations (47a) and (47b) are
identically zero. In fact, it 1s seen from equations (2) and (3) that
this solution represents merely a displacement of the origin of the
physical coordinates. Equations (4Te) and (47f) are more interesting
as they colncide with the well—¥mown Ringleb solution (reference 13).
The corresponding values of F and F are determined by equation (25)
(and the analogous equations). Thus,

Yo
F = —wel® L/Z/Wf g a(1/w) + o
$ (48)
1
F = —molf / / L a(1/mp) +
1/mp M1 Vet

plus a constant multiple of we™16 ana me™1€, The coefficients

of e16 in these formulas, together with w and m respectively,
represent two independent solutions of equations (4la) and (41b)

for n2 = 1. The operators -1 + W d_ and -1 +m %ﬂ which generally

dw
allow the deduction of two independent solutions of the equations
in ¢n and V¥ n from two independent solutions of the equations

in X &and wop, suffer an exception for n =1 as they produce only

one set of solutions; that 1s, 1/m and 1/w, respectively; for when
epplied to w and m the result is zero. This exceptional case 1s
explained in the section entitled "A new get." When n =1

and Ry = % equation (45¢) becomes indeterminate, but the corresponding
velue of T_; can be deduced from this relation as the limiting value

for n->1 of the indeterminate expression. It follows from
equation (L4) that with the condition R =1 at w = 0

Ry = 1 i—rrl - ﬂn—w%li)- /W mlwla(n_l)dwl + O[(n - 1)21
0
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Hence, it is deduced that

w
m my dwy
lim o= WR, (/;

1 n>1 R, —m m (49)
wo/n wp dmy
0
and
m
Y__l = m .
2 0/7 LAl dml
0
Similar expressions hold for T—l and YF&' Hence the equations
N
2 m
(t)™* =0 =5 / Wy dmy
0
[ (50)
(Y—l) = Wl =3 (/om my d.Wl
J

represent the second solution of equations (41lc) and (41d), independent

of ¥; = %- and fl = % and reducing to zero at w = 0. The

expressions ¢le_ie and ‘Vle_ie represent & kind of motion between
two parallel walls. These solutions could be directly obtained by
Inverting and exchanging the variables in equations (48) and
putting w, =m, = 0.
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2,52 _ dn?
If n->«, equation (44) shows that R,"->R," = ==. Similarly

the equations

'T
¥o_ 1 _dw
0 Roo2 dm2
> (51)

2 _ 1 _a(/md)
T_&  d(1/v7)

1

——O0

~

coincide with :L/onlL and 1/B% (equations (12)) and can be explicitly
celculated by equation (16). Then equations (46) show that

x =% =Y 1. 1ot (52)

Ly —c0 —0
v ' 1/2

where A = log w — / E. — (4 log m/d log W) :l d log w coincides
0]

with the value deduced by integrating the diA given by equation (11)

: A
and determining the constant of integration so that £ =1 at w=0.
w

Hence o™ is the subsonic asymptotic value of Xns @ ¢n, and V¥,

for n— o
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The solutions of equations (41) Just discussed are bound to the

solutions, equations (42), by simple relations. For instance,

™~

—il_lz—-‘;;)= Cn(w,m) + Rn(wr)sn(w)m)

f (53)

¥, (W) Cn(%%) _En(wln)sn@’%)

)

as can be verified by controlling the identity of the conditions
at W= 1w, Hence as w->0 and |Cn| and. ISnL“’“

lim Co{w,m)  1im Sp(m,w)

w->0 Sp(w,m)  w-> 0 Cplm,w) —Rn(wr)

T2l o ()
/11y w=>0_ /11y ‘n''r
S ,) Cn‘v-;’l—ll-

The following Interesting expansions are deduced by applying
equations (53) to the solutions in closed form obtained for =n

= +] :
~
W= Wrol(w:m) + mrSl(W,m)
ﬁ (54)
L e (v,m)
W — d{1l/w = — == 5, (W,
(j/Z/Wr gl /M S )

(and the corresponding expansions with the variables interchanged or
inverted).
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Finally, it should be observed that differentiating (for instance)
equation (L4la) with respect to w yilelds

m aw d(1/m) \dw

This equation 1s of the same general form as equations (L1) with

only one of the variables Inverted and 1 — n2 in place of n?; it can

therefore be treated in the seme way as equations (41).

Hence two particular solutions similar to equations (42),

and

(l E o) 2 1
S _.‘a = - (—-w)
o\ . (1L — n<) IE 1\

can be defined through the integrals I, given by the formula (26)

by simply replacing the present variables. For pg >1 +the second
series is imaginary and must be divided by 1 to obtain a real
solution. The general sclution for dXh/dw 1s given by a linear

combination of these solutlons, and the general solution for X, 1s

obtained by integrating and adding an approximate constant. Now, this
must coinclde with the one in terms of Cp(w,m) and Sn(w,m). It is

then eagily derived that

My _Yz‘_ Sn(m: W)

1 = X
C\/I"—r@(ﬁ’w> = Cnlm¥) + 5 —
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and

1
S\/J?—?(ﬁ’w) ! Sy (m,w)

I

Analogous relations obtained by interchanging and inverting the
variables also hold. ZFor n2 = 1 these relations give equations (54)
as a particular case.

Other interesting relations can be deduced in the sgeme way.

Infinite series in the exponentlal set.— The serles in ¢ne_'in9
nd

~1né

—in® -1
and Vpe have been used (as serles in X, and ae

could be) by many authors in the case of the normal iéentropic law
(references 5, 6, 9, and 12).

They seem to have thelr natural field of application in the
problem of two—dimensional gas Jets, as Chaplygin first ghowed in his
classical memoir.

The application to flows around bodies seems to be more
difficult, especially for flows with circulation. The difficulty
arises first from the presence in the hodograph plane of a 8ingularity
at w = W, and from the ensuing necessity of employlng more than one
gerles development in the exponential set with different sequences
of n (as appears already in the incompressible case) with added
eventual terms In other sets, and of lnsuring that the different serles
are the continuations of each other.l0 This can be achieved (although
in a not very simple way) by putting the conditlon of continuity of the
solutions and of their derivatives on the the transition curves (often
circles), as has been done by Tsien and Kuo (reference 12) and as the
author himself has done in an unpublished work in & somewhat different
way, but it 1s belleved that the main obstacle to thls method arises
from the difficulty of insuring that the body will have a closed
contour when a circulation is present. In fact 1f the so—called
"natural” series (that i1s a series having the same coefficlents as in
a chosen incompressible case with circulation) is used in one part of

10This difficulty is avoided in the method by Bergman (reference 6),
which uses a different type of expansion and uses the serles in the
exponential set only as eventual asuxillary series.
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the hodograph plane (so that a basic geries from which the coefflclents

of the other series willl be deduced by the foresaid method is obtained),

the resulting body will be closed only in the limiting incompressible .
case. In a tentative method the author has tried to obtain the closing-—

up of the contour by taking the coefficients of the basic series as

gimple functions of Rn(Wf) (or of the other quantities in equations (43),

W, generally colnciding with w,) containing an arbitrary parameter.

These simple functions reduce to the coefficients of the “natural”
series when, for vanishing w,, R, becomes unity. The arbltrary

parameter is then so determined that the contour closes up. However,
because of the necessity of using, to express this condition, different
series connected by intricate relations, this method seems to be very

complicated.1l In the method studied by the author, series of the kind
glven by equations (31), (32), and (33) (that can be put in simple
relation with series in the exponential gset) could be used, especially
for the condition in transonic and supersonic regions where the series
in the exponentlal set cease to be useful.

It ig worthwhile to mention here that the demonstration of the
convergence of the serles in the exponential set (that Chaplygin first
deduced in the hypergeometric case in a somewhat complicated way) can be
obtained very simply and under very wide assumptions for m(w) by using
the properties of the functions defined by equations (43). Takling, for

instance, the series in Xpe 170 = (Xpe™10)", it is immediately seen
that X > X, for, by equations (47) and (51),

R
1

and

log (X;/X,) = (/ow [1 - (Rm/Rl)]d log w> O

1l he problem of the closed contour has been solved in a very
elegant way by Lighthill (reference 8), who discovered a very simple
development converging in all the field (subsonic and transonic) and .
gave the conditions for the closing-up of the flow behind the body.
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Moreover, for plausible m(w),

R, = &
1= 5

and

- (1 -3l 2

R 55

oo

dR
ere decreasing functions of W, so that a;l <0 and 5;9 < 0. Taking

novw a value of n greater than 1 it is immediately seen from
equations (L4L4) that if, for some value of v, Ry 2 Ry,

- —d(R _~R
then ZQEE%;_QELl >0, and if R, S R_ then ——i—ﬂz———gl > 0. Hence
W W

if one of the two conditions is verified for some value of w, then for
decreasing w +the value of R, will diverge more and more from the

value of R; and of R, so that it cannot be equal to wnity
at w=0. Hence, if R, =1 at w =0, for other values of W,
R, <R, <Ry and from equations (46) X, <X, <Xq.

The following limitations for X, = X" are found by use of
equations (47) and (52), for n > 1:

o™ <xp< wh

Naturally, these limitations hold only for real values of R, and A,
hence for M 1. In the same way it 1s proved that, for n >1,

ma < W, < enx

The analogous demonstration for ¢n and Vv, Trequires the assumption
a(1/we)

that T_°2 =
a(1/u)

must be an increasing function of w. This does
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not seem to be too restrictive a condition, for T__ must in any case

be unity at w =0 and infinity at M = 1, According to this
assumption it can be directly verified that

d mw n? a | a(1/m®)

aw 2T 1/2]2 aw [d(l/wz):] 70

d lo d logm
1+__.§.n_1 l+_____g__
d log w d Jog w

and

>0

m—

a ( w2 ) _ =3 . a(1/m?)
dw \m + w (m + W)E d.(l/w2)

By integrating these inequalities between O and w it follows easily

that
W m 1 /2 W
m d log m .
- /; m dwy 2“/; wy dm) 2 <d Tog w) L/; m; dwy

the sign of equality holding only at w = O. Hence equations (L49)
and (51) show that, excluding w =10, 1 <T_; <T __; and the equation

corresponding to (44) shows that T_;, like T ., 1ls an increasing

function of w. Now for -n <-l1 from the equation in T_,, by a
reasoning identical to that developed for Rp, it can be proved
that 1 <T_; <T_ <T_, end that % >Y_; >Y_, >Y__. Hence

for @, =Y_ ™ the following bounds hold, for n > 1:

N " .
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Similarly, for v

W n
2
ot _ <<§F‘/; mldwl> < wh

The convergence of the Chaplygin (or other) series can be
immedlately demonstrated by means of these bonds.

For negative integral (eventually half—integral) values of n, for
the reasons discussed in the section entitled "The exponentisl get," the
condition that R and T are unity at w = 0 ig not sufficient to
determine the solution. However, it 1is possible to give supplementary
conditions, which are omitted for brevity, such that the resulting
solutions of equations (41) may be used to construct series converging
in all the subsonic hodograph field exterior to = glven circle.

A new set.— Here, only briefly mentioned, is a different set of
solutions of equations (23) in closed form. It has been observed in
the section entitled "The exponential set" that the golutions ¢l

and ’Jfl given by equations (50) cannot be derived from the solutions

of the equations in Xn and w, for n° = 1.

Conversely, if for given G = ¢ne_in9 and G = Wne—inﬂ of the

exponential set values of F and F are deduced by mesns of

equation (25), or the analogous equation for 'f, the solutions obtained
are still of the corresponding exponential set for all values of n
but 1.

In this case, writing instead of G = ¢le_ie and G = ‘Ifle—ie the

more general formulag

—~i0 / pm Wl
) e

xr

and




50 NACA TN 2432

corresponding to equations (48), it follows from equation (25),
with 6, = 0, that

l/w my W
= —wo— 10 . d(jL) wo dmp + ??r + %?
1/w A i
T r

=
|

and

2R
i

- _m-e—ie l/m ,.}_ a _.];. Wl dw~ + W—EI:‘]E. + j'_ai
1 I . 22T s )

/mI' wl T

are new solutions of the corresponding equations in (23), which are not
included in any of the sets already discussed.

Then if the variables are inverted and interchanged and the sign
of 6 1s changed, it 1s seen that

m 1/w -
1 4e 11 <1> 1 160
G=—=c¢ w, dm — diz=—) + -
. m ﬂ . 11 (/; /Wr m, \Wp §wr,m.r 2
and
~ W /m \ .
Wr l/mr 2 IIL2 I'mI'

satisfy the corresponding equations in (23); hence the respective real
and imaginary perts satisfy the equatlons for ¢ and V.

Now applying again equation (25) to the last expressions, other
golutions of the equations in I and T are found, from which by
changing again the variables new solutions G and G are found. Hence
it is seen that the repeated application of the described process -
generates a new set of solutions F and ¥, and G and G.
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The first terms of the corresponding Incompressible set of Gy,

which can be easlily obtained by repeated application of the formula to
which equation (25) reduces for m = w

Fy =¥ /V G4 (V) d(%)
Y

(where V = we—ie) and successlve inversion of V, are

v/2
1 v

—-E—V—log ;I;

-7 E; s + = ng-—-l
E gwr 2 v

THE GENERALIZED POTENTIAL FUNCTIONS

. In the preceding sections, it has been shown that the symmetrical
form, obtalned by meking the velocity and mass velocity (and not the
connection between them) appesar explicitly in the hodograph equations,
glves rise to an interesting general treatment of these equations. It
has been seen that the complex functions F and G, of which the real
parts are x and @, are connected by symmetrical relations to the

functions F and @2 having ® and V¥ as lmaginary parts. In this
gection, 1t will be shown that all these complex functions can be
deduced by simple differentiations from a unique function ¢, called
the generalized potential function.
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A second generalized potential function ¥ 1s also introduced,
with interesting properties.

Let the complex veloclty and mass velocity be defined by
\

Vv = we—16

(55)

=
i
B
=
Y
o
I
|
<

and observe that they are bound by the condition that thelr ratio

W P
— = — must be real and equal to a prescribed function of w, or

V-po

that w must be a prescribed function Q(W/N) of the relative
density. When these conditions are satisfled, the two moduli of
equations (55) will be connected by IW = m(|Vl). Hence eguations (55)

can be written

gso that

and
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It is now geen that if W and V are not bound by the foresaid
conditions and are independent, these relations can be used to define
generalized complex values of 6(V,W), w(V,W), and m(V,W) and there—
fore of all the related quantities. Hence the equation

d logm d lo 1 w/v
L _ye-%loem . _dloge . dlog (WNV) (56)
d log w d log w d log Q(W/V)

defines a complex Mach number M = M(W/V) which, if the physical
conditions concerning V and W are satisfied, reduces to the
real M(p/pg) and can therefore be immediately deduced without the

help of equation (56) by simply replacing in the expression M(D/ Do)
the real variable p/py by the generally complex variable W/V.

Now the hodograph equations, considered for complex values of the
variables, can be transformed by teking V and W as new independent
varlables. From equations (55),

NV _ 16
ow

N _ -0 v

om dm
v _ 16

1 a—e' = Ve

oW _ 16 dm
W dw
% _ 16

and
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so that
N
nd - (§_+;‘%§_>
ow OV dw oW
O _ . fdwo | o
WSE“’(&Eav*aw) [ (57)
o 3 o
] =V — W —
o8 av+ W
/

Hence equations (23a) and (23b) become

am 5 o
W(FV +ﬁFW> = vE, + W,

and

dw =
'V(EE-FV + ?ﬁ) —'VFV + WFW

where subscripts denote partial derivatives. These are satisfled if

Fy = Fy (582)
~ dm
VFV=Wd—WFw (58p)
or
d log m
o 2
VoK, = ———— W°F 8c
V™ 3 logw ¥ (53)
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The first of these equations can be satisfied if a function ® 1s
introduced such that

) (59)

§=¢VJ

and the sgecond will also be gatisfied if & is a solution of the
equation

V20 = (1 — M )W2g,,, (60)

where 1 —M° 1s the function of W/V defined by equation (56).
The meaning of equations (59) end (60) 1s the following. If
a 9(V,W) satisfying equation (60) is known, and after oy end o, are

calculated, the right values of V and W are introduced (that is, such
that W/ 1s real and IWi= m(]|vl)), then

>
il

R.P.(oy)

g
1l

I.P.(0y)

will be solutions of equations (8).

Observe that if in equation (60) the two complex veriables are
replaced by the real variables 6 and w (and m(w)) by the inverse
relations of equations (57), the resulting equation (in a complex @)
remains unchanged by exchanging w and m. The functions F end ¥
(and X and ®) can be deduced by relations containing the derivatives
of ® with respect to w, m, and 16.
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Equations (23c) and (23d) can be treated in the seme way and the
result is found that if ¥(1/v,1/W) is a solution of

L% (1 — M) 1 % | (61)

then the functions

(o]

]
o/
|

Q/
<+

? (62)

@
Il
Q |/
= |’é‘

will be, upon substitution of the right values of W and V, solutions
of equations (23c) and (23d), so that the functions

¢ = R.P. oL

1
°F

and

<
I
t
Mg

Y,

=t

o/
=~

will be solutions of equations (6).
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Naturally ¢ and V¥ can also be related to 6.

with the help of equations (57) and (58),

2 o]
v _ o2 0 [°w
= — + - = Ve —{— +
G = O ey T Oy av<V
/o
2
~ W _ _ .29 W
G = W¢Vw+ v ) @V-w SW(_V +

?ﬁ)
W

o7

From equations (24),

it follows that

0 (63)

Hence, comparison with equations (62) shows that to within an

unessential constant,

- _(ﬂl . j‘iv_)

(6k4)

The physical coordinates are deduced by the following relations
which may be obtained from equations (30) by use of equations (55), (57),

and (58):

S + i =

S+ 1N

~

—10 [V
v o
© (WQW+ w)

(65)
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After assigning to W and V thelr correct values, separating the real
from the imaginary part, and using equations (2), it can be shown
explicitly that

which can also be written

1 d d d B d d %
z = 7 R.P. V(Vﬁ-+w-a-ﬁ+l)7 + o I.P. W(VBT/"+W§W'+1)_\T (66)

By differentiating this equation, there can be deduced an
expression of dz vhich must coincide with the expression (2), that is
with

dz=-(-1\g+i%y— (61

when d¢ and d¥ are obtalned by differentia%ing the expression
derived from equations (63)

oy @ o
g + iV = R.P. |V %(-VE + %) + 11.P. WP S-W(QVW + 'WY') (68)

It can be shown that the agreement exists 1f @ is a solution of
equation (60), and if W/V is real. It seems therefore that the
comparison of the values of z calculated directly from equation (66),
or deduced by integration of equation (67) (using equation (68)), may
congtitute an interesting check on the accuracy of approximate methods.
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Observe that ¢ = c1V + coW + c3VW 1s a particular solution of
equation (60), the simple meaning of which is that c1 constitutes an
additive constant of w and of —¥, cp the same for X and —¢,
and c3 (complex) represents a general displacement of the origin of
the physical coordinates.

Particular sets of solutions of equations (60) and (61) are easily
deduced from the sets studied in the preceding sections by integrating
the relations (59) and (62) end introducing the expressions of w, m,
and 6 as functions of V and W.

In the incompressible case, V =W, 1 —-M2 =1 and equations (60)
and (61) reduce to identities satisfied by every function of V. The
written relations reduce then to

Fy(V) = ;' (V)

Gi(V) = —Va\h'(V) - V(Di"(V) _ ‘Di'(V) - 72 g? (@iV(V))

S5 + iN
v

21 (V) = F{'(V) = &"(V) = %5 + 1) = w

If the solution corresponding to the incompressible flow around a
given body 1s known in the physical plane, @i(V) can be deduced from

these relations. The profile of the body can, for instance, be defined
by a relation S = P(N) between the subnormal and the normal for vy =0
(and by giving this value to the corresponding streamline).

Hence for I.P.(G;) = 0, that is, for I.P.(Ve;") = I.P.(0y') it
follows that

1

WS = R.P.(VO;") = wPE—II.P.(Qi‘ﬂ
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The corresponding relation for the compressible case, which
can be easily deduced from the preceding formulas, is

for I.P.’EI2 %(%{ + %Yﬂ = 0,

R.P.(chvw + V@W) = mPELI I-P-(‘bvﬂ

after the correct values for V and W are introduced. The function P
will be the same in both cases i1f the profile is unchanged.

The equations (60) and (61) are of the same general kind. It 1s
possible to pass from the one to the other not only by a substltution

like equation (64) but also by simply putting
O = TWOx w
: (69)

¥ = Tx

1
=

/

since, as can be immediately verified, &% must satisfy equation (61)
and Ux, equation (60). The equations may be transformed in many ways
by changing the two independent varlables. One of these transformations
is obtained by taking as new independent variables (K tbeing a consgtant):

> (70)
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The equation (61) in ¥ (or ®&x) is thus transformed into

1y YR _
]IE'Q - E[l (1 - %) KWE](]IEE 2%] +ﬂ27m) (72)

where the flrst factor of the right—hand side is a function of W/V,
hence of 1/t, since

W 11+ (n/e)

Vv VK1 - (n/8)

A gimilar transformation may be performed on equation (60) by
putting €=V + W and =V —VW.

Other interesting transformations are obtalned by taking
E=1ogV + €(W/N) and q = 8(W/N) and choosing in different ways
the functions € and O. In this case the variability of the
n varlable can be restricted to the real field. Partlcular cases are
obtained by taking, for instance, ¢ =0, ¢ = log SW/V),
8=1-M and © = w(WA) <since dlog¥ __ -\ m important

d log (V/W) M
case 1s the one for which & = A — 16 and n = A, where A 1is the
pame as in equation (11) or equation (52); this is obtained b
de -1 ad VE —-ﬁé

takin = and =

® 2 log (V/W) (1 + V1 —M°) d log (V/W) M2
thls transformation is performed, an equation in ¢, and ¥ (or one
in ¢ and y*) is deduced that may be used to obtain directly
solutions of the kind obtalned by Bergmsn (reference 6) and
Lighthill (reference 8).

. If

Finally, let equation (60) be written with the actual isentropic
law. In thls case .
1

i
o _ 1+2__£M2>
pO 2
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Hence, consideration of the observation following equation (56) and
substitution of the resulting value of M(W/V) in equation (60),
yields: .

o A o
Ve = <1 - (-) - W
v 7 —1 [jw :] O

There is a corresponding equation for equation (61). For real W/V the

corresponding values of 1 — M2  are shown in Tigure 5 for some values

LA gL as abscissa. It 1s interesting to observe that
v 0

if 7 is in the actual range for gases, its value does not seem to

affect to a great extent the shape of the curves, especlally in the

subsonic renge. The factor 1 —M® ig linear in W/ for 7 =0 and
in V/W for 7 = 2; for other values of 7 in the actual range it is
not far from a stralght line in the subsonic range.

of 7 with

2
The curve 7 = —1, that is 1 — M = EE ig also represented in
v .
the figure, and corresponds to Chaplygin'se approximation. The KArmhn—
2
Tsien approximation corresponds to 1 - M2 = Eg— where the constant K .
v
(see equations (17) and (21)) is so chosen that at infinity (P = p)

1 —-M2 will take the value 1 —-Mwe glven by the true law.

THE CHAPIYGIN-KARMAN-TSIEN CASE

For the Chaplygin—Kérmin-Tsien approximation the right—hand side
of equation (71) (or equation (69)) becomes zero so that the general
golutions of equations (60) and (61} are

-

[S]
1}

W fl(g) + fg(ﬂﬂ

k ' (72)

= e1(t) + ex(n)

=3
|
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with ey, ep, f1, and fp arblitrary functions of the variables &
and n defined by equations (70). The value K = 1 corresponds to

0]
Chaplygin's approximation; K = (1 —-Ma?) —%» to the KarmAn-Teien
Lo ed

approximation.12 As 1t has been observed in the section entitled
"Approximate Methods" it can be convenient to chose K—values between

the two.

The solutions (72) can be interpreted in two different weys.
First they can be regarded as the exact solutions of the corresponding
equations for a gas satisfying the ideal law (18).

With the use of equations (70) for ¢ and 1, this law can be
written |t]|n| = —H; or for real W/V, hence for real & /n,

e =¢7 =nE=-H (73)

This relation allows the expression of ¥ (and &) as the sum of two
arbitrary functions of & and E or of n and 7.

In the second interpretation, equations (72) are considered as
approximate solutions of the equations for the actual law of gases. In
this case

2
1 o
Eq =R =nf = — {1 —— (74)
| Tll e we 02K

is no longer a constant, but is a function of w.

12pg observed in footnote 4 the actual presentation of this method
1g more coherent than the ususl one, as the constants H and K of
formule (18) are here deduced for a single reference.condition; namely,
the infinite point.
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Naturally the last expression, and the relation (73), do not
restrict the independency of ¢ and 1n; as they must be used only
after all the formal deductions from equations (72) of the following

kind have been performed. From equations (72) and the application of
equations (59), ~

1
V(f I f')
W 17 VJ\f~ l 2t WVE 2

and

— 4 L = 2f, —kf' + 2f, — qf
v W 1 1 2 n 2

According to equation (64), the last expression coincides with -
hence, by equations (72),

- 1
Efl

(o}
f

I
=

92 = 2f2 - T]fz'

From equations (62),

G = ¢ + i"ljf’ = gfl" - fl' + Y]fgn - f2'

and

é-\':'a + l‘l'r = (gf L fl' - T]f2“ + fg')

L
vk
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so that

¢ + i\/‘KW = gfl" - flr + T]f2" - fg' = 8l(§) + 82(-7]-) (75)

i

8 and g, being two functions related to f1 and f, by the relations

~
8_]_' = gfll"

) (76)

82' = nfgm J

Now, from equation (66)

for real W/V (hence 1f V and W have
the same argument 0, and ¢t

and n the same argument 6):

2 = e1%Rr.p. e‘ie[fl — &Rt o+ % (e + n)fy" + £, — nfy' o+ % (e + 'q)fzﬂj

+ 16167, p, e‘ie[fl — efy' 4+ % ele = )" + 1, = 0ty — % n(e - q)fg']

_ 1.2 1 210 T
=fp - &0+ 2 E20 o —mfp' + 2 0°0," + L 650 q(e" 4 ")

1.2 1.2 1

(77)
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This relation glves the physical coordinates as a function of the

1 1 10
hodograph coordinates w and 6 when £ = [— + ————T7=%el
X

w  m(w)
and 17 = [%—, _ 1 116 .o introduced imbo it (with the assigned
m(w) VK
lavw m(w)).

Differentiating equation (77) yields

D dz = E2FMaE + 'qg‘fg"'dn + |en](£ymat + £™an) + (£1 + £2") aleq)

But dz 1s also glven by ‘équation (2), which may be transformed in the
following way

2dz=%d¢+i_;]—3——f\/—fd\k=gd(¢+iﬁ¢)+qd(¢—im)

or (see equation (75))

0 dz = E2£1™AE + nfy"an + |Eq|(£ ™Ak + £ dn)

Hence, in accordance with the observation following equation (68), these
two expressions for dz colncide only if |[é&ql 1is constant; that 1s,
if the law cormecting & and n 1s the law (73) (or (18)), hence the
same law as the one for which the eguations (60) and (61) admit the
golutions (72). This is what is done in the Kérmhn~Tsien method. If,
on the contrary, the alternmative interpretation of equation (72) is
adopted, the coincidence ceases to exist. In this case, 1f the law
connecting € with n 1s the exact gas law, the error term between the
two values of 1z, that is,

Dz = .]é-/(fl" + £2") aléql

with |tn| glven by equation (74), may be regerded as a measure of the
approximation of the approximate solution (72).
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Observe that if the law (73) 1is taken, hence if ﬁ'=-—§g

equation (75) shows that the general solution for ¢+ iVEY 1s &
function of £ alone (containing the constant H), that is, it is a
function of A — 18, where M\ 1is glven by equation (19), a result in
accordance with the Chaplygin's monogeneity conditions.

The expression (77) for z can be also written by using the
functions g, and g, instead of f, and f, so that (see

equation (76)),

d/’ngl"'dﬁ + d/nnefg'“dq + e} (1" + £7)
td dgo + Intll [ Tag + [ La (78)
€ + [ N4 1 e 461 = 8o T
If the law (73) is assumed, thls equation reduces to
d/vg(dgl + dgp) + U/nn(dgl + dgy)

/gdg—H %dg (79)

where g(t) = gy(&) + go(—H/t) 1is the complex potential ¢ + iVEV in

27

2z

this case. In the incompressible case H = 0, K = 1, and 2zy =/ £ 4g
2
2 _ . _ H dg
with ¢ =7V. Hence Teien's formula z = z; —-Zjd/ﬂ<azz dz: 1s

immediately obtained.
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Tt is well—known that in the case of the flow round a body Tsien's
formula generates closed profiles only if circulation 1s absent. Many
authors have studled extentions of the method to the case with .
circulation. Bers, Germain, and Leray (references 13 and 14) have
followed a first way; Lin, Germain, and Gelbart (references 15, 1h,
and 7) a second way; here a third way of constructing flows around
closed profiles with circulation will be shown, based on the subdivision

of g(&) imto gy(t) and go(g). Iet g1(V,/(z1)) = g1(8/8x) be the
complex potential of an incompressible flow around a closed profile with
a circulation I. Then, since for £ near ¢E_,

(8/t)F =1 + k,z§/§w) —ﬂ + 0 {Eg/gm) - 1]2

it follows that

f&dgl=2j{‘dzi=0

> (80)

fdgl=2f£§dzi =—-§-g§j§‘(§—§w)dzi=l‘ .
*® J

where the integrations are performed along any contour in the physical
plane enclosing the profile, or around the corresponding contour in
the &€—plane enclosing £ (for simplicity, suppose Vm and §°° real).

Now generally,
jé’ gkdzi

It

ke / (¢ — g )dzg =—5 ¢ r (81)

so that

v |

1 2 ]
dgl=2j[;§dzi=g—r (82)

and the value of 2z glven by equation (79) for a compressible flow
with g = g, is not one—valued. But if g =g; + g, for the

given g, & g, can be determined in such a way that the corresponding

residual terms in equation (79) will compensate the value of the
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last written Integral. If the value of the circulation must remain
unchanged, 8 must be one—valued. This condition is obtained very

simply by taking, for instance,

e\ _2h§m>n
82-*1<?>/§;:dgl~gw? 2y

The constant h can now be determined so as to obtain the said
compensation. From the ldentity

St r(ﬁ—rge) * IT{—;/E_(M) o "e2)
and from equation (81) it follows that
] = fé_(mr) afe™
j{ &> 24 ( 82)

L opt ™ / g () dz; = rht T

n+r

Hence for real £, and H = —£ Moo

1
f& dgp, —-H/-g— dg, = -k, — )T

If equation (79) must be one—valued, the last quantity must be
equal to (see equation (82))

H/%dgl = —en T
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Hence the equations

2N
h = i
o — N
and
21 <§>ﬂ 3
= ———X [ R _d_ 8
&= -\t /Em & (83)

will satisfy the foresald condition of compensation.

Observe now that the constant factor does not depend on n. Hence
the condition is also satisfied 1f (£,/E)™ is replaced by P(fo/E)/P(1),

where P is a polymonial in £/t or an infinite series converging in
all the domain of variation of €. Hence the function

P(E,/8
¢+ RV = g(&) = g (&) + : 2}"% ;(1< )/gz dgy (84)

where P 1s an arbitrary function of £,/E, 1s analytic in all its

domain of variation, and will generate a flow around a closed profile
with circulation T.

Obgerve that by using equations (70) for real & and 7, the

expregsion for the constant h 1is
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For the Chaplygin or KérmAn-Tsien values of K there is obtained,
respectively, the very simple expressions, both vanishing in the
incompressible case:

and

h=\1-M2-1

Particularly simple forms of egquation (84) are cbtained by
putting n =0 or n =1 in equation (83). For n=1 an expression
is obtained which coincides with what becomes the Lighthill solution
for y = -1 (reference 8).

The golution (84) satisfies the condition of generating solutions
around closed profiles with circulation when In €] = Constant, and
z 1s given by equation (79). Now if In€| 1s variable, as given by
equation (74), and the equations (72) are considered as approximate
solutions of the exact equations (60) and (61), 1t 18 still possible to
find solutions for which z, given by equation (78), 1s one—valued. If
again gl(g/gw) 1s the complex potential for the incompressible case,

satisfying equations (80), with I, in place of T, and if Sg(ﬁ/nm)

1s a function for which the expregsions

fﬁ'd%:o
dgr =T

(85)
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(analogous to equations (80)) hold where the integrations are rerformed
in the 7 ©plane along the contour corresponding to the one of
equations (80), then equation (82) and the analogous relation for g,

give

go that the sum

will be zero for

N
r, =22 r (86)

\ Hence equation (78) will be one—valued if g, satlsfiles
equation (85) with I, glven by equation (86), and

g+ 1BV =g (&) + ge(?]')
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will represent, when the expressions (70) for ¢ and n are replaced
by the exact connectlon between m and w, an approximste solution of
the exact equations with circulation

z being given by equation (78), and the error term

s o3 [ ([T [Ee)er

representing a measure of the approximation obtalned.

Clearly the simplest way of satisfying equations (85) and (86) is
that of takingl3

gp(n) =-32 & (7)

Naturally this solution still holds when lgn| = Congtent.

An epproximate solution for the transonic case is now noted,
corresponding to the subsonic KarmAn-Tsien approximation. If M =1,

then the KArmén-Tsien value (equation (21)) for X dis zero. The

131f the KhrmAn-Tsien velue (equation (21)) is adopted for K,
which makes the right—hand side of equation (71) zero at infinity, then
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corresponding curve of 1 — M2 in figure 5 reduces to the horizontal

axis 1 —M° = 0. In this case the right-hand sides of equations (60)
and (61) are zero, and the respective solutions are

L=
I

= fl(W) + er(w)
and

¥ =%el(w~) + e (W)

2

where the arbitrary functiong involved are bound by the relations
—-el = fl'

and

Equations (66) and (68) then give

. . ‘ R T " .
1 i _ i of*1 "
z =5 R.P.(Wfy') + WB + ‘I.P.(fg)] = fo! + & I.P.ET (——-—V + £, E]

2
P+ iy = —R.P.(f)') + iI.P.("—i/.— "+ Wefg" + W' — fg)

The approximate gas law corresponding to 1 — M2 =0 1s, by
equation (56), m = Constant, therefore po/p is proportignal to w.

Actually m has a maximum at M = 1, and the distance between the
gstreamlines reaches there a minimum., If the approximate law m = Constant
were adopted, the distance between the streamlines would be unchanged
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throughout the fileld of motion, and this would give rise to difficulties.
But if the solution is congldered as an approximaste solution of the
exact equations in the transonic field (even for M_# 1 but near 1),

then the exact law for m(w) can be introduced in the solutions. This
approximate transonic theory seems worthy of development.

September 27, 1949
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Figure 2.- Comparison of the Karman-Tsien and Chaplygin approximations
with the true isentropic law.
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Figure 3.- Variables o and B as functions of M\ for isentropic gas.
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